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A B S T R A C T

We review the current and potential uses of Geographic Information Software (GIS) and “spatial
thinking” for understanding body disposal behaviour in times of mass fatalities, particularly armed
conflict contexts. The review includes observations made by the authors during the course of their
academic research and professional consulting on the use of spatial analysis and GIS to support
Humanitarian Forensic Action (HFA) to search for the dead, theoretical and statistical considerations in
modelling grave site locations, and suggestions on how this work may be advanced further.
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1. Introduction

Rodrigo Guerrero Velasco, the mayor of Cali, Colombia from
1992 to 1994 (re-elected in 2011), is an epidemiologist. As mayor of
a city that was at the time plagued with a homicide rate of 124 per
100,000 residents, he adopted an approach to fighting crime that
the local press labelled “urban acupuncture” — sticking pins in a
map to mark crimes, particularly homicides. This “hot spot”
mapping (which is now routinely digital and GIS-based) allowed
the municipal authorities to focus resources on the “sick” areas of
the city [1]. Guerrero Velasco understood the value of visualisation
and of data-driven inquiry. During his tenure as mayor and for two
years following, the homicide rate in Cali dropped significantly [2].

One of several maps that were exhibited in the genocide trial of
General Ratko Mladic at the United Nations International Tribunal
for the former Yugoslavia highlighted the spatial relationship of
schools with mass execution sites (Fig. 1). The relationship might
seem contrived unless you know that up to 8000 men and boys
from in and around Srebrenica were detained for several days
before being executed. Because most of the buildings in the area
had limited capacity, the detentions were mostly in schools, an
agricultural warehouse, and a cultural centre. Some of those who
were held prisoner and survived the killings were able to testify
about the mass executions at and around these detention centres.
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In most cases, victim bodies were transported in trucks from
execution sites to nearby burial sites. Understanding the spatial
dynamics and logistics of detentions, which includes knowing the
boundaries of the area under control of those responsible for the
subsequent killings (the area marked “RS” in Fig. 1), was important
in the eventual discovery of victim burial sites [3].

When mass fatalities occur due to natural disasters or armed
conflict, official resources for interring the dead and investigating
the missing often become overwhelmed, forcing improvisational
treatment of both statutory and customary treatment of the dead
and missing. In cases including illegal killings, burial customs may
be deliberately violated either as a means of concealing evidence
(i.e., victim bodies) of crimes or as a means of disrespecting the
victims and their communities. In these scenarios, the bodies of the
dead are often buried anonymously, transforming them into
“missing persons”. For those seeking the missing, understanding
situational variability in burials and deviations from customary
and statutory burial practices is paramount. Knowing the circum-
stances of disappearance and death as well as those responsible
can help us deduce where we ought to be looking for the bodies of
those who are missing.

In this article, we emphasise the utility of spatial thinking and
analysis, things typically eschewed in favour of oral testimony and
written documentation. Spatial analysis, in this context, involves
visualising an area of investigation and assessing spatial relation-
ships among variables that influence how and where bodies are
buried (or otherwise managed). We introduce some Geographic
Information Science (GIScience) tools that enable more effective
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Fig. 1. Map submitted as evidence in the trial of Ratko Mladic, Bosnian-Serb General, showing territorial boundaries, schools used as detention sites and mass execution sites.
Evidence Reference Number 0706-7941 in Prosecutor v. Mladi�c, IT-09-82.
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investigation of the missing, presumed dead. We illustrate these
concepts and methods with several cases from our applied
research. The aims of our research are to: (1) supplement
traditional investigative efforts and (2) explore new means of
investigation using GIScience. More than simply introducing
concepts and tools, however, we advocate spatial analysis as a
more informed way of preparing for disaster to mitigate the social,
psychological, and material cost of not knowing the whereabouts
of those who have disappeared and are believed to have died.

1.1. Background

Typically, those who investigate missing persons cases seek out
witnesses. Witnesses describe what they saw, turning memories,
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in the form of mental images, into words, which are documented
and used to guide investigations. In some cases, witness state-
ments lead investigators to a specific place (e.g., a detention,
execution, or burial site) and, depending on the perceived
reliability of the information, might lead to an excavation in
search of a grave (a prospection). Ideally, the information is
accurate and precise so that bodies can be found, exhumed,
identified and returned to family for culturally appropriate
treatment. Yet, sometimes the information provided by witnesses
or informants is not reliable and no burial sites are located. New
witnesses will then be sought in the hope that they, in turn, will be
able to identify a burial location. This methodological loop tends to
have diminishing returns until there are no more witnesses with
new information and investigators simply stop searching for the
missing.

When the search for unmarked burial sites fails, we seldom
know what went wrong. Did the witness of a possibly traumatic
event simply not remember accurately? Was their information
generally correct but imprecise? For example, a grave prospection
might have stopped only 30 m away from the actual burial site. Or
perhaps the witness was, out of a misguided desire to help,
subconsciously and inaccurately embellishing the facts. Worse, but
plausibly, a witness might have been deliberately deceiving
investigators by providing false or inaccurate information. Those
of us engaged in these failed searches know how disheartening
they can be. Most of us can only imagine what impact failed
prospections have on the families who are seeking the missing.
Driven by these failures, we seek to develop an alternative search
method. One that does not exclusively rely on witnesses who can
draw an “x” on a map to indicate a burial site or describe its
location. Instead, we examine the common patterns of character-
istics of the known locations of body disposal during times of mass
fatalities when the capacity to register and mark the burial place of
the dead is overwhelmed and in the instance of criminal
disappearances and deaths.

Since the early 2000s, geospatial technologies have become
embedded in applied research in a wide-range of academic
disciplines, innovative business models, international humanitari-
an organizations and civil society groups. Geographic Information
Science (GIScience) refers to research that both develops and uses
geospatial technology to create analytical models for scientific
research. Geospatial technology refers to a wide array of data
gathering instruments that produce data for Geographic Informa-
tion Systems (GIS). For example, Convergne and Snyder discuss
how geospatial technology has become a strategic and tactical tool
for United Nations peacekeeping operations [4]. Other interna-
tional organizations have explored GIS and other geospatial
technology for mapping inhumanitarian contexts, for human
rights monitoring [5] and in some rare instances for detecting
suspected mass grave sites [6,7]. The non-profit Ushahidi began in
2008 to crowd-source volunteered geographic information (VGI)
to map electoral violence in Kenya. In 2010 they managed
volunteer efforts to use GIS and crowd-sourced data to map the
streets in Port-au-Prince to facilitate the delivery of humanitarian
aid in post-earthquake Haiti [8]. The wide application of GIS in
such scenarios belies the seemingly short next step to mapping
victims of such disasters (places last seen alive or seen dead,
morgues, hospitals, and body disposal sites). Identifying the dead
is more easily done when multiple locations can be linked to
triangulate data and there has been a profusion of open
government data and public data generation by way of almost
ubiquitous mobile phones and GPS-enabled cameras. Yet, there are
considerable procedural issues that need to be resolved to link
such spatial data sets to the expertise and spatial analysis required
to interpret and turn the confluence of data into actionable
information. We are now light years beyond pins on a map, and
linking these big data, open data, VGI, and other data sets to the
expertise required to handle and interpret them could lead to
dramatic changes in the way the authorities (or others) handle the
dead in times of disaster and war.

GIS is an effective tool for visually displaying multiple sources of
data into one coherent image, often depicting latent trends not
directly observable from individual data sources. Moreover,
witness testimony does not need to be abandoned as it can
instead be coded and incorporated into a geospatial database that
maintains the integrity of the accounts as attributes of spatial
locations. Mapping burial sites can serve multiple purposes.
Sometimes exhumations are not feasible (e.g., ongoing conflict,
lack of resources or expertise), or are not desired (e.g., for religious
reasons or political sensitivity) [9]. Simply plotting the grave
locations on a map can be critical to the return to that location if
conditions change in the future (e.g., an end to the war and the
desire for humanitarian exhumation, identification, and repatria-
tion). In addition to burial sites, mapping places of disappearance
and death allows the recording of related geographic features and
proxy variables. Proxy variables can be generated through spatial
analysis of information either from available datasets or carefully
coded witness testimony (distance from road, location last seen
alive, polygons of known battle sites, to name a few). In this
context, there are two primary purposes of mapping: visual
representation and spatial analysis. Sometimes analysis is simply
intuitive, as in the classic crime map of Guerrero Velasco in Cali to
identify a cluster of crimes in a particular neighbourhood and focus
their investigative efforts on that place. However, GIScience and
spatial statistics enable much more powerful analysis.

2. Materials and methods

2.1. Geospatial tools and data

At its core, a GIS includes a sophisticated database that allows
for the acquisition, management, analysis, and display of spatial
data. Data within a GIS is categorised as either vector (points, lines,
and polygons) or raster (any image based on pixels, such as a .tiff or
.jpeg). Vector data represents discrete features, such as the
coordinate point of a grave, a cemetery, a road, or a territorial
boundary. A raster dataset is comprised of pixels; in this instance,
pixels represent grids of varying sizes (resolution), that have a
spatial component and an attribute component for each grid cell. A
commonly employed raster dataset is a digital elevation model
(DEM) in which the spatial attribute values for each cell include
elevation for that location. A more familiar raster format is .jpeg,
where the frame is divided into millions of cells (measured as
pixels per square inch) and the attribute value for each cell is a
colour, thus composing a picture. Unlike traditional databases, the
organizing principle for all data within a geospatial database is
spatial location.

For the purposes of mapping the missing and deceased, points
can be plotted as vector objects into a geographic reference system
(often latitude and longitude) that is linked to other layers such as
political boundaries. Ideally, each point corresponds to an
individual or case. For each individual’s point, several non-spatial
feature attributes can be recorded to construct a database of the
missing. Attributes can include information such as field identifi-
cation numbers for each missing person, their location last seen
alive, political affiliation, civilian status, age, sex, nationality,
stature, and identifying markings or characteristics (such as
tattoos, dental augmentation, etc.). Attribute tables can be entered
into GIS without having associated coordinates. This is particularly
important in the event of a grave excavation when a body is
identified because the coordinates can then be added to the
attribute table.
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Geoprocessing steps such as buffering, clipping, and measuring
can be conducted on selected or all spatial layers (e.g., topographic,
road and railway networks, land use, hospitals, cemeteries,
military facilities, morgues, military field maps) and entered into
a GIS for analysis. Such steps allow us to measure the relationships
between places and combine data sets. Defining all possible
locations of victim remains requires pooling different types of
information from various sources. The relevance of relating
locations from different types of spatial data layers can be seen
in the investigation of Malaysia Airlines MH17. The commercial
aircraft carrying 282 passengers is believed to have been shot
down over the Ukraine in 2014. Bodies recovered at the crash site
were moved via train by rebel authorities to a nearby town [10].
The spatial relationships of the crash site, rivers, the political
boundaries and military-controlled territory within which the
crash occurred, a missile launcher position, and the road and train
networks all influenced how victim bodies were handled following
impact (at multiple locations because of the mid-air explosion and
fragmentation).

The introduction of spatial data into geodatabases can also
enhance our understanding of errors in data collection and
processing that might escape attention in conventional non-
spatial databases. In the former Yugoslavia, particularly in Bosnia–
Herzegovina from 1996 to 2001 and Kosovo in 1999 and 2000,
multiple investigative entities operated concurrently [11]. These
organisations used different standards of recording information,
which caused problems coordinating knowledge and action on the
ground. Gathering data on the deaths at Srebrenica in Bosnia was a
particular focus of the Office of the Prosecutor (OTP) of the
International Criminal Tribunal for the former Yugoslavia, which
dedicated resources and expertise to document killings in a very
thorough manner. The primary interest of the OTP was to
investigate grave violations of international criminal law, including
crimes against humanity and genocide. Both of these crimes are
demonstrated by systematic killings, which can require viewing
victim graves at a smaller (i.e., “zoomed out”) scale, rather than on
an individual basis. Other, smaller (in personnel and budget)
organisations recovering bodies in the Balkans generally operated
on a site-by-site basis and their goals were primarily humanitarian,
so less concerned with reconstructing a larger temporal and
geographic narrative as would be important to a criminal
investigation of genocide. As such, there is far less detail available
from their work that can now be used to analyse patterns and scale
of deaths and burial during and following the wars. If we rely on
this available geographic data, the more thorough and numerous
cases documented in Srebrenica can constitute a sampling error for
model design and in the actual analysis of data (i.e., the sample will
be skewed).

There are several other data entry inconsistencies that can
cause errors in analysis. For example, places might have names that
are spelled differently according to the language being spoken or
written during the documentation process (e.g., Kosovo or Kosova,
Table 1). By giving spatial coordinates priority, such differential
names are resolved in a spatial-enabled geodatabase.
Table 1
Distinct place names for the same districts according to
language in Kosovo/Kosova.

Albanian Serbo-Croat

Drenas Glogovac
Ferizaj Uroševac
Fushë Kosovë Kosovo Polje
Kamenicë Kosovska Kamenica
Rahovec Orahovac
Skënderaj Srbica
A second data problem relates to quality. Although there are
many free or inexpensive digital maps available from online
repositories, governments or other organisations, the precision
and accuracy of them can differ greatly. Fig. 2 shows a map with
road networks from three different sources. One source (with
roads drawn using a burgundy line) is much more detailed than the
others, but the others do mark some roads that the first does not.
These maps can be merged, but it can take time and the
completeness of the final map might still be lacking.

Another benefit of using geospatial tools such as GIS is that they
can be deployed at several scales. GIS can support spatial analysis
including bone microstructure [12], mapping body positions
within a mass grave to assist with commingling resolution [13],
mapping deposits of bodies within a grave [14], mapping a site
within a geographical context and mapping sites relative to each
other [15], as well as graves relative to other points of interest such
as schools, as illustrated above.

Ultimately, exploring spatial relationships within particular
armed conflict contexts gives a more quantifiable understanding of
the dynamics that caused people to go missing. While this can help
find the remains of those who have died, this may also help analyse
and understand comparisons of spatial variation and relationships
of similar events among distinct countries. A greater understand-
ing of the variation in human behaviour regarding body disposal
will help to develop theories that guide further analysis and
improve the effectiveness of searches for the missing, identifica-
tion of remains, and return of the missing to their families for
dignified burial.

2.2. Models for locating the missing

A fundamental concept in modelling human spatial behaviour
is that humans interact with their environments in patterned, non-
random ways [16–22]. The ways in which humans have predictably
exploited their environments has been the basis of archaeological
site prediction that has been employed by Cultural Resource
Management firms for decades [23]. Congram and Kenyhercz have
argued that human behavioural ecology, specifically optimal
foraging theory (OFT), can be used as a theoretical framework
for applying site prediction modelling to aid in locating the missing
[24]. Briefly, OFT hypothesises that natural selection is preferential
to animals whose behavioural strategy maximises their energy
intake per unit of time spent foraging for resources. Congram and
Kenyhercz extended OFT to understand the nature of clandestine
body disposal by positing that clandestine burial location is a
function of time spent with remains (analogous to foraging time)
and avoiding detection (selection), which is bounded by either
culture, local environments, or both [24].

As mentioned above, there are many spatial variables available
to model the location of potential sites, however, few, if any, are
going to be explicitly related to the death event or subsequent
burial activity. Instead, spatial variables are often used as proxies
for human behaviour, or cognitive decision-making. Whitley
identified three different classes of proxy variables that inform
cognitive decision-making: (1) direct causal reference; (2) indirect
causal reference; and (3) non-causal reference [25]. Direct causal
references tie an environmental, or spatial, variable to some sort of
cognitive behaviour. For example, a viewshed is a map created with
GIS that shows the area that is visible from a fixed location. The
visible area can directly impact decision-making, which, in the
current context might relate to avoiding detection while disposing
of remains. Indirect causal references do not explicitly influence
cognition, but will affect the way that latent variables may
influence decision-making. To illustrate, distance maps, or cost-
distance maps (distance maps that are bounded by other variables
such as slope, natural or cultural barriers, etc.) could be used as a



Fig. 2. Three road network maps for the same location, each differing in precision and completeness. One public source maps (“OSM”, which stands for OpenStreetMap,
above) is more complete and precise than others from private sources, but each of the three has roads marked that are absent in the others. Credit: ©OpenStreetMap
contributors, data available under Open Database License.
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proxy for familiarity with a region, which assumes that people are
more familiar with their immediate vicinity than they are of
regions further away, thus unconsciously bounding their potential
disposal sites. Lastly, non-causal references use proxies for some
sort of behaviour even though there is no direct relationship. Take
the viewshed example again. The line of sight from a particular
vantage has a direct relationship to the individual from that
vantage. However, the vantage point might also allow an individual
to hear better or worse from a location, which cannot be directly
measured in GIS.

Predictive modelling of site locations is both an inductive and
deductive process. The inductive aspect starts with compiling a
database of known site locations and plotting them in a common
coordinate system. Simply displaying spatial data layers in an
interactive GIS facilitates the identification of spatial patterns
using the human eye and expert knowledge of events and
geographic areas, just as Velasco used pins on a paper map to
elucidate homicide clusters in Cali. Spatial data analysis recognises
some unique barriers to analyses and accounts for problems such
as the Modifiable Areal Unit Problem (MAUP). The MAUP occurs
when point-based data are aggregated into new levels of analysis
(often polygons) as is often done when district reports of criminal
events are aggregated into table formats. The aggregation of points
(such as burglaries) and subsequent averaging of attribute data
(such as cost of items stolen) obfuscates and leads to a loss of
understanding of spatial patterns of behaviour, especially when
clusters of events may cross over and be divided into neighbouring
areas (such as police districts). In other words, burglaries that
straddle a boundary might not be seen as being related if they are
only looked at within individual police district boundaries. The
spatial display of data in GIS, even without statistical modelling,
allows a more effective visualization and analysis of both inductive
and expert knowledge. Identified patterns might then be
investigated through fieldwork or through statistical modelling.

Statistically significant clusters can be identified through a
variety of analyses including Getis-Ord Gi (Hot Spot) analysis,
Ripley’s K-function cluster analysis, and Average Nearest Neigh-
bour tests. These analyses examine spatio-temporal relationships
of event observations as well as the spatio-temporal clustering of
observation attributes (for example, crime rates or event magni-
tude) for statistically significant clusters. After significant clusters
have been identified, the spatial relationship between environ-
mental and cultural variables can be tested: distance-to-road (or
water, or railways, battlefields, site-last-seen, etc.), slope, view-
sheds, elevation, surface geology, land-use, population density, and
demographic and economic distribution maps to name a few.
Using GIS, variables can be assigned to each of the significantly
clustered points. Further, to test for significance, one can compare
the variable values at each known site location to those at random
site locations. This will show if the environmental and cultural
variables show any significant pattern particular to the known
grave sites when compared to a random distribution of places
where there are no sites. Using GIS, it is possible to set a study area
boundary and populate it with a random distribution of points.
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Environmental and cultural variable values can then be measured
for each of the random “non-sites”. To test for significance of
continuously distributed (parametric) values (e.g., distance to road,
elevation), a simple two-tailed t-test can be used when the
assumptions of normal distributions are met. When normal
distributions cannot be assumed or are violated, Monte Carlo
Simulations (or random permutations) are often used to establish a
p value for hypothesis testing involving continuous data. On the
other hand, for non-continuous data (land use, surface geology,
demography, etc.) it is necessary to use nonparametric significance
tests such as the Chi-square Goodness of Fit Test and the Mann-
Whitney U test. In both the parametric and nonparametric cases, a
p value will be calculated. Typically, if p values are greater than
0.05, it is assumed that the distribution of variables between sites
and non-sites is not significant. Put another way, if p is greater than
0.05, the distribution of a particular variable is not significantly
different among actual grave sites and randomly distributed non-
sites, which means that that particular variable has little analytical
value alone in predicting grave site locations.

Equipped with the environmental and cultural variables that
significantly contribute to site location, building models relies on
deductive reasoning. Consider the following hypothetical scenario:

A battle takes place between warring factions in a town that is
bordered by a river on the north side. Three kilometers north of
the town, the main road rises to cross a high elevation ridge.
During the battle, one party suffers dozens of fatal casualties
and with few intact vehicles, makes a harried retreat across the
river, destroying the only bridge as they go. You are part of a
post-conflict commission to help facilitate the location and
repatriation of the dead and decide to create site prediction
maps. You have compiled your datasets of known burial
locations and all available spatial proxy variables. You have
noticed that elevation, particularly high elevations, are signifi-
cantly associated with grave locations, 50% of casualties have
been buried in cemeteries, and that graves are almost always
located within 10 kilometers of the place where a person was
killed. Would you include the ridge in your analysis?

Inductively, the ridge is very attractive for burial locations: it is
restricted geographically (narrow), has limited visibility as shown
by a viewshed analysis, is high elevation, a town at the southern
edge of the ridge has a cemetery, and it is within the ten kilometre
range of most burials relative to fatality locations. However, it is
here that deductive reasoning is paramount in creating a location
model. The validity of a model rests very much on the context of
the battle: the only way to transport the dozens of dead to the ridge
had been blown up during the retreat by the survivors. It is
extremely unlikely that the dead could have been taken north
across the river for burial. As Kvamme pointed out, archaeological
sites (particularly Native American) can be accurately predicted
based on distance to water (rivers and streams) and surface
geography (fertile loess), but so can the distribution of elm trees
[23]. Thus, the difference between spurious correlation and
causation rests entirely in context-driven deductive reasoning.

To produce a site prediction map, each of the variables must be
considered together. The end product of site prediction modelling
is not to create a map that explicitly shows the location of
individual graves, rather it identifies high and low probability areas
where graves are likely to be given the commonalities amongst
known site locations (inductive) and the context of the conflict
(deductive). There are several methods available to produce site
location prediction maps: weighted map-layer, binary logistic
regression, maximum entropy modelling, and agent based
modelling to name a few. The practical applicability of each of
the modelling methods will largely be site, scale, and context
dependent. Site prediction modelling is based on the concept of
raster math. As mentioned before, raster data is one of the two data
types available in GIS wherein a grid is created that describes the
location and some other sort of attributes (elevation, colour,
distance, slope, demography, etc). To create the model, all
explanatory, or predictor, variables must be converted into raster
datasets.

The weighted map-layer approach entails re-weighting each
variable within each raster dataset, or changing the values of each
gridcell so that the values that are significantly related to grave
location have a high positive value and those that do not have a
low, or even negative value. For example, say 80% of all known sites
are within 20 m of a major road, a 20 m buffer can be created
around all major roads and assigned a positive value to reflect a
greater likelihood of having a burial, whereas further distances will
have a lesser value, or even a negative value (say in the middle of
the desert that is impractical to access). Each raster dataset is re-
weighted with this sort of criteria and then all of the variable layers
are “added” together (a process included in raster math). This
process can be visualised by thinking of each of these raster
datasets as simple arithmetic tables with the rows to be calculated
being organised by explicit spatial location (coordinates). The
numbers are then assigned a colour scheme to visualise the
continuous distribution of low and high numbers. The end result is
a new raster that shows high and low probability locations in a
continuous form. Remember, each of the original variables were
re-weighted in such a way that higher positive numbers show sites
that have a lot of variables in common. To go back to our
hypothetical example with the destroyed bridge, it is during this
re-weighting step that the area of the high-elevation ridge is
excluded from analysis, or assigned negative values because, given
the context of the conflict, it was unreachable.

A less subjective way to create a site prediction map can be done
through binary logistic regression. Logistic regression will look for
optimal splits between two response variables (those being
predicted), which in the current case is between known grave
site and randomly generated non-site. The values for each of the
variables included in the analysis are subjected to the logistic
regression wherein coefficients for the explanatory (predictor)
variables are automatically generated to best separate the two
responses (grave site vs. non-site). Theoretically, logistic regression
scores can range from negative to positive infinity, with a cut-off
typically designated at 0. Put simply, the value for each variable is
multiplied by the coefficient and then summed together to
produce a logistic regression score — those below a certain
threshold are classified as non-site, and those above it as an actual
site. As a product, the logistic regression can tell you how accurate
the model is at classifying grave site from non-site as a total correct
classification, and also which variables are significant in the
analysis and which are not. The logistic regression can then be
fitted to the known data to show each individual site’s logistic
regression score. These scores can be reloaded into GIS and
displayed with a colour gradient to show high and low probability
areas as well as demarcate the statistical cut-off between known
sites and non-sites.

Maximum entropy modelling (Maxent) was developed to make
inferences on presence-only data, which in the current case would
mean the known distribution of actual grave sites. A target
probability distribution is estimated by locating the maximum
entropy probability distribution that is bounded by a set of
constraints [26]. The sample point in this case will be the actual
grave site, and the environmental, spatial, and cultural proxy
variables are constraining features. Using Maxent, it is unnecessary
to generate a distribution of non-sites because the probability
distribution is generated based on the set of features that all of the
known sites have in common. The end result will be the same – a
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map set to some colour scheme depicting areas of high and low
probability.

Agent based modelling (ABM) is another approach to modelling
probable grave site locations. Also sometimes called individual
based modelling, ABM models contain agents, decision-making
heuristics, adaptive learning rules, a topology, and environmental
objects (often serving as barriers). The possible spatial behaviours
of agents (individuals) is constrained or enhanced by the above
factors in the models which are run on GIS-based computer
simulations. So, for example, if a researcher knows that movement
is largely reliant on mechanised vehicles, roads can be created as an
important topology vector. If most burials are conducted in
clandestine locations, the researcher can attempt to operationalise
those clandestine areas as spatial goals by creating limits to
movement in non-clandestine (e.g., highly visible and populated)
areas. The spatially aware probability models are run on agent
actions, which produce probability maps (introducing randomness
through Monte Carlo Simulations) for possible grave locations.

3. Results

In our preliminary work and research using GIS to study
geographic relationships related to conflict graves in several
countries, we have made several useful observations. For this
paper, we will list some of the most important and common
considerations that are necessary for effective mapping and
analysis, with anonymised data to illustrate these.

1. Some cases of missing persons “last-seen” locations coincide
with conflict event locations (e.g., shellings or battles) and/or
grave locations. This is often the result of soldiers who died in
battles, where the dead were buried at that same location. In our
studies across different countries, this is a fairly common
practice. On other occasions, depending on the resources
available to move victim bodies, the dead will be buried at
the nearest local cemetery. Other instances of this location
overlap results from killings of individuals, usually non-
combatants, in homes. It is not uncommon for victims to be
killed at a house and then those responsible for the killing leave
the site without burying the victim. In these instances, friends,
family or neighbours of the victims often bury the victim on the
same property. In both of these cases we see a coincidence of
event locations, but the circumstances of death are quite
distinct. Nevertheless, from the perspective of victim body
recovery and identification, this co-location is very important,
and can be illustrated very clearly using GIS. Both of these
circumstances have been observed by us in our work in various
countries in Central Africa, East Asia, and Europe.

2.
Fig. 3. A table showing road classifications and proportions 
Some missing persons’ “last seen” locations are reported as
being distant from any known conflict event, killing, or burial
locations. The two most plausible explanations for this spatial
discrepancy is incomplete data. The first explanation is that
people were reported last seen at specific locations, but there
have been no related reports of their nearby death and burial. In
this instance the “last seen” location and “death/burial”
locations are near one another, but there is information only
on the first criteria. The second explanation is that the “last-
seen” information about a missing persons comes from
someone who last saw them some time (and distance) from
their death. This can happen when, for example, someone is
mobilised for battle and their family members report them
leaving their home on a particular date. It might be that several
days pass before the missing person is actually engaged in battle
and the distance travelled between their home and the place of
battle/death/burial is great. Linking these locations is not easily
made with maps or spatial analysis. Instead, more information is
needed along with logical (deductive) inferences to better plot a
more accurate place of disappearance. In this example, useful
information about a person's actual place of disappearance � to
distinguish it from a “last seen” location � would most likely
come from their military unit and places of combat engagement
that post-date their last seen location as reported by family
members. Although the most useful information related to the
eventual identification of the missing person will often come
from family members (e.g., ante-mortem data and comparative
DNA samples), information on the missing person’s burial
location is more likely to come from another source (e.g., co-
combatants, military records). Coordinating these complemen-
tary types of data is something easily done with GIS.

3. Local expertise, specifically language and cultural expertise, is
very important at the stages of data collection and interpreta-
tion of analytical results. The biggest element of this with
respect to mapping the missing is probably language. Territories
with multiple languages, data collected from sources in
different languages, and maps with distinct nomenclature are
all common problems. An analysis of closest roads to known
burial sites in two neighbouring countries showed the greatest
number to be tertiary roads in one country and residential roads
in the other (Fig. 3). Looking over maps of the respective
countries, it appears that the discrepancy is attributable, at least
in part, to labelling conventions, rather than different burial
patterns. In other words, roads labelled as “residential” in one
country are labelled as “tertiary” in the other. The number of
road categories is also greater in the one country than in the
other, which will impact one’s perception of existing burial site
location patterns. Having local personnel to interpret why
certain patterns exist can be critical in the development of site
from different countries of nearest road types to graves.



D. Congram et al. / Forensic Science International 278 (2017) 260–268 267
location models. In one country, we noted that disappearance/
death locations were hundreds of kilometres from the burial
locations. It did not take an expert to detect that this was highly
unusual, but a person who had local knowledge was able to tell
us that during a ceasefire, those bodies had been repatriated to
families far from the front lines. Identifying these anomalous
cases is important because they skew models and interpreta-
tions.

4. Discussion and recommendations

At times of mass fatalities, government resources are often
overwhelmed, particularly during armed conflict. Traditional
roles and customs change, often affecting the disposal of dead.
Record keeping might be ad hoc, unsystematic, or even
deliberately avoided. Non-governmental and intergovernmental
organizations might be active in these places and work to support
government efforts to record the dead. However, a lack of
standard operating procedures, disparate resources and man-
dates, and the involvement of multiple organizations often results
in a chaotic, incomplete corpus of information that complicates
the recovery, identification, and return of the dead to their
families. In response to these challenges, the ICRC has acquired
forensic capacity and developed HFA to assist in proper recovery,
documentation and identification of the dead in armed conflict
and catastrophes.

The identification and return of the dead to their families is
universally important for many reasons. Symbolic memorialisa-
tion of the dead is part of this process and prevalent across
time, regions, and culture. As discussed by Barceló and Pallarés,
“production, distribution and consumption take place in a
physical space, and as a consequence, this physical space
becomes transformed, socialized” [27]. In other words, these
places take on societal significance. Different studies debate
how far back deliberate burial goes in human evolutionary
history, with recent discoveries suggesting the practice is as old
two million years [28]. Some of the debate considers whether
or not burial was in fact ritual or simply a way of discouraging
dangerous scavengers from discovering a dead body, thus
jeopardizing the living in the area [29,30]. Modern humans
have made the ritual treatment of the dead, most commonly
burial, almost a universal practice.

The advancement of technology has made GPS-enabled mobile
phones and cameras easily accessible to laypeople. The widespread
use of these in conjunction with satellite imagery allow for the
recording of death scenes and burial sites in real time, even (or
especially) in times of war. The ubiquity of GPS-enabled technology
can potentially alleviate many of the issues incurred in our
experience — such as inconsistent, vague, or unreliable witness
testimony about times and places. Now, instead of post hoc
interviews, images can be taken with date, time, and location all
stored in the metadata. This by no means will replace witness
accounts. While photographs and videos are useful tools, they are
only part of the overall picture.

The other side to the increasingly available technology and ease
of distribution is the problem of data protection. This has been a
principal concern and significant obstacle in our recent consulting
on grave site location analysis. The prospect of donating GPS-
enabled phones or tablets to investigators of missing persons (or
even to soldiers during conflict or post-battle surveys) to
document disposal locations of the dead is easy and relatively
inexpensive. Information related to the dead, however, can be
extremely sensitive. Data recorded could include the faces and
names of witnesses, (including those responsible for deaths),
videos of senior officers ordering executions, vehicle license Plates
� possibly belonging to civilians but sequestered by the military
for the transportation of victims, victim bodies, families of victims,
etc. The ease of electronic data storage and transmission make it
more difficult to protect as massive data leaks in recent years
clearly demonstrate.

Recognizing the ability to better record and understand how the
dead are treated and how this often contravenes the legal
obligation of states to treat the dead, we make two simple
recommendations, which we believe will improve the resolution of
cases of missing persons, presumed dead: (1) think spatially; and
(2) map the dead. The first suggestion is conceptual and the second
is practical. Organizations tasked with the humanitarian or judicial
investigation of the dead should think spatially. They should
consider how people understand and use space with respect to the
treatment of dead bodies. These organizations should also equip
themselves with very basic tools such as GPS-enabled mobile
phones or tablets in order to improve the recording of actions
related to the dead. This can extend from the individual death
scene during routine investigation to mass fatality incidents.
Further, keeping a repository of spatial data in conflict zones is
useful — particularly road network maps, aerial images, places of
interest (e.g., cemeteries), and DEMs. Visually mapping sites
related to death is not a new concept — we do it all the time when
we mark cemeteries. Standard expectations, norms and resources
change at times of mass fatalities and the cartographic documen-
tation of the dead is often neglected.

We have discussed methods for conducting spatial analysis and
generating site prediction models of the dead in disasters and
armed conflicts. However, in conclusion, the following points must
be stressed:

1) Context is key. There will never be one model that can
adequately encapsulate the intricacies of clandestine body
disposal. A thorough understanding of the conflict and culture
are necessary to draw the most meaningful conclusions from a
model.

2) Data quality. Accurate geographic coordinates are important,
but meaningful interview questions that can aid in the search
for the missing are just as important, if not more important than
extremely accurate geospatial locations.

3) The products of site prediction maps are not maps that depict
the absolute location of where graves will be. Rather, the site
prediction maps show where graves are likely to be given the
commonalities that those locations have with known grave
sites. These maps are not to be taken as gospel, but instead as
guides to help focus search and recovery efforts.

Using GIS and spatial scientific principles for the analysis of
spatial patterns in the post-hoc search for missing persons shows
great potential. Despite being in its early stages, we are already
able to identify some lessons learned that can inform best
practices. We hope that sharing such early work will contribute to
the further development of these methods as a novel and useful
tool for HFA.
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